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ON OBSERVATION PROBLEHS IN DISCRETE SYSTEMS* 

B. N. PSSSNICSNYI and V. G. POKOTILO 

Questions on the construction of information domains consistent With the signal 
realized at the output of a linear discrete control system with indeterminate noise 
is examined. Recurrence equations describing the dynamics of the informationdomains 
as a function of time and of the signal realized are obtained on the basis of dual- 
ity relations /l-S/ and of the idea of dynamic prograaxning /6/. Filter equations 
are obtained from these equations in elementary fashion in the case of consistent 
quadratic constraints on the perturbations in the system. Certain possibilities of 
such an approach when considering systems nonlinear in the observations are demon- 
strated. 

1. Statament of the problem and duality theorems. Let an object's motion be de- 
scribed by the difference equation 

zk+, = Azk + vk, k = 0, 1, . . ., t - 1 (1.1) 

Here zk is an n-dimensional vector, A is a constant (n X n)-matrix, vr is a perturbation in 
the system. It is assumed that itisimposslbletoobserve the vectors z& and that the quantit- 
ies 

y& = BZk + Ek (1.2) 

are measured, where yk is an m-dimensional vector, B is a constant (m X n)-matrix, && is a 
perturbation in the measurement channel. The initial condition a, and the perturbations v&$ 
&, k-0.1, . . ..t--l. are unknown. Information on their possible realizations is exhaustedby 
the descrition of their admissible domains of variation, i.e., by the inclusion 

{zo* gt, f,> E M (1.3) 

where M is a closed convex set in R"('+') X Rmt and the notation f* = {fo, fit . . ., f,_l} is used. 

Definition /l/.The setof those andonlythosevectors ZE p foreachofwhichwecanfind 

a triple {z,*, Ft?, &*} E M such that the solution St of system (l.l), (1.2), found for z0 = 
zg*, IT, .= aI*, & = &*, zt = a, satisfies the condition lit = a**, is called a domain 21 (81*) 
consistent with signal &+. 

From the definition it follows that set &(Q,*) is nonempty and that better information 
on the true value of vector zlr than the description of 21 et*), cannot be obtained. From 
the linearity of system (l.l), (1.2) and th e convexity of M directly follows 

Lemma 1.1. Set 21 G-1') is convex. 
Set & (@t-1) is determined uniquely (to within closure) by its own support function 

Wr ($ 101) = SUP {<Sl z> : z E 2, Q,)) 

Consequently, the determination of the support function of the domain consistent with the real- 
ized signal Z; consists in solving the following optimal control problem with phase const- 
raints: 

($9 Zf> 4 sup (1.4) 

under conditions (l.l)- (1.3). BY writing out the Lagrangian of this problem, we get that the 
dual problem is described in the form 

Rere for simplicity it is assumed that ti and nr (k= 8, 1, . . . , t- 1)are n- and m-rows,res- 
pectively. The following duality theorem is valid under the assumptions made /5/. 
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Theorem 1.1. The value of the upper bound in problem (1.41, (l.l)-- (1.3) equals the 
lower bound in the dual problem (1.5). 

We can consider the problem for systems with lag, when (1.1) has the form 

%+I = -4~~ -i- Cz~_, - Q. k = 0, 1, _, t - i (1.6) 

and constraints (1.3) are described by the inclusion 

{Z-l? . . , Z-t, 30, T,, &) E M (1.7) 

The domain .& (jj,) consistent with the signal yt realized is defined analogously. The deter- 
mination of this domain's support function, which under analogous requirements on M is a con- 
vex set, reduces to solving the problem (1.41, (1.6), (1.21, (1.7). The dual problem has the 
form 

=p i,?, (%'t&,, ch:. - ($b, zO> -:- i( 1 ,l,lt~,cii) -t (qk.E:;) - <qhr yk>):h,... , h~t,L$)E Jf}-+inf (1.8) 

$1 = qi;+$A .:- *r-&1( m'- l11;8, b= 0, 1, . . ( t - 1, $1 = 9, $,+I =. . = qltl = 0 

The corresponding duality theorem is stated analogously. 

Theorem 1.2. The value of the upper bound in problem (1.41, (1.61, (1.21, (1.7) and 
the lower bound in problem (1.8) coincide. 

Below the forms of the functionals in (1.5) and (1.8) axe defined more precisely for 
constraints (1.3) and (1.7) of concrete forms, while the dual problem is solved by the dyn- 
amic programming method. In this connection the Bellman function determines the support func- 
tion of the domain consistent with the signal realized and the recurrence relations defining 
the Bellman function describe the dynamics of the information domains. 

2. Consistent quadratic constraints. Let the indeterminacy in system (l.l)-(1.3) 
be constrained by the set 

l-1 
M=[~&,f,J : czo,kl: (2.1) 

f&i is the unit ball in fin(*+lj Y 12"'). In this case 

sup {<We> -:- ~&ii,&~ + (,li,,E,I;)):Izo,c*,~~} EM]= 

If we introduce the additional variable (Fr)? then we 

((%~*a> - EoY*-_,_ *$ <tf~,~h: -+ irif , 

r, = hi+1 -k <ar+lr %+I> + <vkr ~ldr k = 0, 

can write problem (1.5) as 

(2.2, 

The Bellman equation and the boundary condition for problem (2.2) are /6/ 

If no additional information on the indeterminate noise comes in during the process, then 
according to Theorem 1.1 the support function of domain .Z,(y,) coincides with Qt (+, 0) and 
relations (2.3) define the dynamics in time of the information domains. The following state- 

ment is given without proof. 

Lemma 2.1. Let there be given a scalar a >Ot vectors band e , and a positive de- 

finite matrix R such that l- (h, R-lb)>0 and * - (c, R-Q> > 0. Then the equality 

inf{(a -t 2<c, 1)) i- <q, Hq))',l - (I), b)) = <b, R-” c> + (2 - <h. R-lb))‘;> (a - <c. R-‘c))‘ll (2.4) 
n 

is valid. (If 1-<b,R-‘b)=O, then the lower bound in (2.4) is not achieved). 

Theorem 2.1. TE the indeterminate perturbations in (1.1) and (1.2) are specified by- 
the consistent quadratic constraints (2-l), then the domain Z,(ij,) is an ellipsoid with the 

support function 

(2.5) 
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'Ihe ellipsoid's parameters satisfy the following difference equations with initial conditions: 

o = A+x0 + f&~-x - 3~,._~“) Rk_,-‘3Pn._1A+ 

:# = I-j- AP,_,A* - APk_lB*Rk_I-iBPk_lAA* 

(2.61 

ek’ = ek-1’ - <(h-l - Bzk-PI, Rk-,-’ (!,k-1 - BZk-,-,O)> 

26” = 0, P, = I, ea = 1 (2.7) 

Here 1 iS the Unit !fariX and & = I f BP&B*. (Matrix RR is not singular since without 
loss of generality we can take the rows of matrix 3 to be linearly independent). 

Proof. By induction we show that the function 

Qk (9, ‘+i) = <aLo+ q> f 4 (c + <% pR$>y'* 

W&l% Sk", pk and &k SatiSfy'EC@f. f2.6), is a solution of problem (2.3). Indeed, 

Ql (4% 5) = <so*, s> + so (r, -I- <*, P&>flJl = (I, + <% $>)"I 

Further, let 

Then 
Qk (tp. 5) = inf (<Zk-:t 9-4 + @> + Ek-, (6 + <'@. '!'> + 

<% 3 + <?ipA + tl@, Pk-t &A + @)>I“’ - <rl, &-I>} = 
<A&x*. ‘i’> + ek-1 i;f ((a + 2 <G q> + <$ Rk-ltl>)“’ -<VP a>} 

a = f, + ($9 (1 + APwA*)q>, c = $AP&* 
R,,.e = 1 + B&R*, b = e&~-’ (&+I - &k-p) 

It ten be shown that the hypotheses of Lemma 2.1 are satisfied for u, b,c and R+, defined 
thus, and, consequently, 

where rf, pa, ek satisfy rela ions (2.6). 
We proceed to solve prob 9 m (1.8). We assume that I- 1, z_, = 0, {~~,i?~,&} E M, Mis 

determined from (2.1). Then 
f-1 

Sup (90, %> -t- &(@k+x. vk) + tftk, ‘&>I : S-I = 0, (20, &,-$,t, E Ml = 

Introducing the additional scalar variable Sk, we arrive at a problem analogous to (2.2), 
where the equations of the adjoint system and the missing boundary cond%tions are taken from 
(1.8). We make use of Krasovskii's ideas /7/ to solve this prablem by the dynas&c program- 
ming method. If 523,($,x, 6) is the Bellman function for this problem, then the dynamicprogram- 
ming equation takes the form 

%+I ('h X7 5) = itf (52, &A + rlB + Xc,$ 5 + <Ip, $> +<qv r)>) - <II, yk>}r k = 0, 1, . . ., 1 - 1. (2.8) 

Qo (9; x* Q = (t + (9, *>v 

Using Lenma 2.1, by induction it can be shown that the function 

Qk ($7 x* t) = <zk’? 9) t- <zt”v X> “t Pk (6 + <$v pk@ +<% QkX> -t- (9, skX> + <X, Sk*~>)l”, k = 0, 1, . . ..t 

iS a SOhltiOAl Of l!+jS. (2.8) when ok',+',&, Qr,SI,er satisfy the following realations: 

&+X0 = AZk’ + xk” + (f,k - BZk’)Rk-‘3 (Sk + P&*) 

xk+l* = czko + (J/b - ~Zk~~Rk-~~Pkc~ 
(2.9) 

P k+l = 1 +- Qr + A&A* + A& + $*A* - (API, f- t&*)x B*&-‘B (8, + PkA*) 
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QR+, = CPkC* - C&.B*Rk-‘BPkC* 

&+I = (API, -t Sk*) (I - B*R,-‘BP&Y 

with the initial conditions 

0 
0 pmxo o = 0, P, = I, Q. =I 0, S, = 0, fg = 2 (2.10) 

Here, as above, I?k = i -t BPkB* and Fk is determined from the last relation in (2.6). If ad- 
ditional information on the perturbations' realizations does not come in during the process, 
then by virtue of the boundary conditions from (1.8) and (2.2) 

Consequently, we have valid the following theorem. 

Theorem 2.2. If the indeterminate perturbations in system (1.8), (1.2) are specified 
by the consistent quadratic constraints (2.1), then domain &(&) is an ellipsoid with the 
support function 

Wh (?/I ! Sj() = <z,O, I/,> + k.& <*, Pkql>3:?, 12 = 0, ‘I, . ., t 

and the ellipsoid's parameters satisfy Eqs.(2.9) and (2.10). 

3. Geometric constraints. We now assume that the set M in (1.3) is defined as fol- 
lows: 

J$~=={{z,,. j;,. &}:Z,fZZ',Ck‘?V, &EE. k=&....t--l} (3.1) 

where 8, Vand E are closed convex sets in R" ,R’” and Rm, respectively. In this case the 
information domains & (jjk) do not possess as regUlar a structure as under the condition of 
consistent quadratic constraints on the perturbations, and it becomes difficult to obtain the 
filtering equations of form (2.6) and (2.7). Under such conditions it is convenient to have 
difference equations describing the dynamics of the information domains. With due regard to 
(3.1) we obtain 

where W(. IX"), W(. IV) and W(* 18) are the support functions of sets z", V and 5, re- 
spectively. Therefore, from the dynamic programming equations for problem (1.5) follows. 

Theorem 3.1. Let ,Zh f&) be the domain consistent with the signal jth. realized. Then 
the support function of set Z,(&) satisfies the recurrence equation 

lj'p,c ($ ! fik+,) = inf {w, ($A _'~ !]fi ( ijx) + w (rl ! 8) - (91, !,k>} + w (112 ! 1‘) , I, .-- 9, . . . t ~- : (3.2) 
rl 

C!', (4) ! .ijo) z W (‘II) 1 Z’) (3.3) 

This theorem has been proved in /8/ by some other methods. 

Example 3.1. Let 1: == (0). E = (Oj, Z" - X7'. In this case Eq.(3.2) becomes 

iI'&+1 N I !h+J = i;f {JJ’k CC A QB I YIJ (11, !I:.)’ 

Hence, allowing for (3.3)) we obtain that 

(3.4) 

From (3.4) follows, in particular, the known observability criterion 

Pa,& /iB*, A*B*,. . ,, ,i*“-‘B” ,I -= 0 

( *denotes transposed matrices). 

Example 3.2. Let P = f,~'=]$", let matrix A be nonsingular and let the perturbation 

occur only in the measurement equations. Then 

Iy,;+I (0 ) gkfii = i"," [WI; ($.4 -b '1 18~;) f W (g 151 -- (q, !/A_)) 

Therefore, the estimate 
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is valid. Furthermore, the equality 

rvt (VIIlr) = w* oPl1~) 
whose right-hand side is the second adjoint function /g/, holds. 

Let us consider the nonlinear system 

(3.5) 

(3.6) 

As before, the perturbations {z,,, Ft, &} satisfy the geometric constraints (3.1). 

Theorem 3.2, Let & &.) be the domain consistent with the signal realized in system 
(3.6). Then the relation 

2, &) = f (&-, @k-d n Q, bk-I), v)? @ (I/) = (2 : 3& 65 8, g (2, b) = y) (3.7) 

is valid. 
The theorem's proof follows simply frcm the definition of 2, (&). An analogous statement 

was given in /8/ for the case of linear systems. From Theorem 3.2 it follows that relation 
(3.2) can be treated as the application of the infimal convolution operation /9/ to the sup- 
Port functions of the corresponding sets for linear f(., .) and g(., .). Thus, relation (3.7) 
opens up certain possibilities for the analysis of information domains in the caseofnonlinear 
systems. Assume that function f(z, v) is linear , set Q, (&is closed and convex for any admis- 
sible y, and z" is bounded. Let tvk(. I&), k = 0, . . ., t and W(. i@(y)) be the support func- 
tions of sets 2, @N) and Q,(U), respectively. Then from (3.7) follows 

Theorem 3.3. The support functions of domains &@k) consistent with signal ft in 
(1.11, (3.6), (3.1) satisfy the recurrence equation 

w&+1 ($ 1 fk+l) = w ($ 1 v) + i,"f {wk (W $_ X 1 ck) -i- w t-2 I @ (Ilk))) (3.8) 

with initial condition (3.3). 
If the assumptions in Example 3.2 are fulfilled, then 

pvk (J, 1 gk) d Ak (9 I jk) = min (vv (9 A”’ 1 @ (If)): 0 %i i < k - 1) 

It can be shown that analogously to (3.5) 

wk (‘# ! 6ik) = &z** (‘t’ I i?k) 

(The requirement that matrix A be nonsingular can be eliminated by examining the correspond- 
ing functions on the subspace generated by the linearly-independent rows of A). 

Example 3.3, Let g(‘* e,=Z+tzlr, IEl<i. Then Q, (y) = {z (z, 8). I;* 1 g I*] and 

Consequently, Eq.(3.8) can be written as 

wk (v 1 iikb = w (9 I v) +$$ (t’cj;-1 (VA -b aYk-1 1 @k-d - ‘/? (x 1 Yk-I 1’) 

The task Of determining ~~k(~l~~) is reduced fn this case to solving ++ one-dimensAona1 optimi- 
zatfon problems. 

1. 

2. 

3 

The authors thank Kurzhanskii for discussions on the paper. 

EEPBBENCES 

EDBEEANSEII A.B., Control and Observation Under Conditions of Indeterminacy. Moscow,BAUEA, 
p.392, 1977. 

-I N.N., Theory of Control of Motion. Linear Systerms. Moscow, NADEA, p.475, 1968. 
{See also English translation, Stability of Notion, Stanford Univ. Press, Stanford, Cal. 
1963). 

ANAN'EV, B.I., On the duality of the optimal observation and control problems for time-lag 
systems. Differents. Uravnen., Vol.10, No.7, p.1160, 1974. 



6 B. N. Pshenichnyi and V. G. Pokotilo 

4. BERTSEKAS D.P. and RHODES I.B., Recursive State Estimation for a Set-membership Descrip- 
tion of Uncertainty. IEEE Trans. Automat. Control, Vol.AC-16, No.2, 1971. 

5. GOL'SHTEIN E.G., Duality Theory in Mathematical Programming and its Applications. Moscow, 

NAUKA, p.351, 1971. 

6. BELLMAN R.E. and KALABA R., Dynamic Programming and Modern Control. New York, Academic 
Press, Inc., 1966. 

7. KRASOVSKII N-N., On the analytic contruction of an optimal control in a system with time- 
lags. PMM Vo1.26, No-l, 1962. 

8. KATS I.Ya. and KURZHANSKII, A.B., Minimax multistep filtering in statistically indetermin- 
ate situations. Avtomat. i Telemekh., No.11, p.79, 1978. 

9. ROCKAPBLLAR, R.T., Convex Analysis. Princeton, N.Y. Princeton Univ. Press, 1970. 

Translated by N.H.C. 


